• Users Online: 160
  • Home
  • Print this page
  • Email this page
Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
ORIGINAL ARTICLE
Year : 2017  |  Volume : 3  |  Issue : 2  |  Page : 88-93

Antimicrobial activity of Vitamin C demonstrated on uropathogenic Escherichia coli and Klebsiella pneumoniae


1 Medical Student, Pondicherry Institute of Medical Sciences, Kalapet, Puducherry, India
2 Department of Microbiology, Believers Church Medical College, Thiruvalla, Kerala, India
3 Research Associate, Believers Church Medical College, Thiruvalla, Kerala, India

Correspondence Address:
Dr. Stephen K Mathew
Department of Microbiology, Believers Church Medical College, Kuttapuzha P.O., Thiruvalla - 689 103, Kerala
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jcrsm.jcrsm_35_17

Rights and Permissions

Purpose: Studies have demonstrated the ability of Vitamin C (ascorbic acid) to inhibit pathogenic bacteria and inhibit biofilms. The effect of varying concentrations of ascorbic acid on bacterial growth was studied on uropathogenic Escherichia coli and Klebsiella pneumoniae. The concentration at which maximal inhibition occurred was determined. Methods: All uropathogenic strains of E. coli and K. pneumoniae isolated from patients over a 3-month period were incubated in varying concentrations (5, 10 and 20 mg/ml) of Vitamin C-supplemented Trypticase Soy Broth. Effect on bacterial growth was quantified as a change in absorbance measured by spectrophotometry (450 nm), as compared to controls. Independent samples t-test was used to calculate P value. Results: Bacterial growth was inhibited at all Vitamin C concentrations. Mean absorbances of E. coli and K. pneumoniae broths containing 5, 10, and 20 mg/ml Vitamin C were significantly less than absorbances of growth control broths without Vitamin C (P < 0.005). This inhibition was independent of antimicrobial resistance profiles of isolates. Differences between mean absorbance at 10 and 20 mg/ml Vitamin C for both species were not significant (P > 0.005). Thus, the inhibitory activity of Vitamin C appears to be dose-dependent, with 10 mg/ml being the optimum concentration of ascorbic acid. Conclusions: Ascorbic acid's ability to inhibit bacterial growth may find novel clinical applications. Vitamin C may find potential use in topical antibacterial applications, or urinary bladder irrigation fluid for catheterized patients with urinary tract infections or during bladder instrumentation. There is a need to further explore the possibility of using Vitamin C safely as an effective antimicrobial agent.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed338    
    Printed9    
    Emailed0    
    PDF Downloaded53    
    Comments [Add]    

Recommend this journal